Part Number Hot Search : 
BUL55A DS80C320 74HC2G86 TDS11 A1386A 4ALVCH16 MF1S50 750X7
Product Description
Full Text Search
 

To Download IRF6608 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 9/12/03 IRF6608/IRF6608tr1 hexfet   power mosfet notes   through  are on page 10  application specific mosfets  ideal for cpu core dc-dc converters  low conduction losses  low switching losses  low profile (<0.7 mm)  dual sided cooling compatible  compatible with existing surface mount techniques directfet  isometric description the IRF6608 combines the latest hexfet? power mosfet silicon technology with the advanced directfet tm packaging to achieve the lowest on-state resistance in a package that has the footprint of a micro-8 and only 0.7 mm profile. the directfet package is compat- ible with existing layout geometries used in power applications, pcb assembly equipment and vapor phase, infra-red or convectio n soldering techniques, when application note an-1035 is followed regarding the manufacturing methods and processes. the directfe t package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. the IRF6608 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. the reduced total losses make this product ideal for high efficiency dc-dc converters that power the latest g eneration of processors operating at higher frequencies. the IRF6608 has been optimized for parameters that are critical in synchronous buck converters including rds(on), gate charge and cdv/dt-induced turn on immunity. the IRF6608 has been optimized for parameters th at are critical in synchronous buck converters including rds(on) and gate charge to minimize losses in the control fet socke t. v dss r ds(on) max qg 30v 9.0m ? @v gs = 10v 16nc 11m ? @v gs = 4.5v absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t a = 25c continuous drain current, v gs @ 10v a i d @ t a = 70c continuous drain current, v gs @ 10v i dm p u l se d d ra i n c urrent  p d @t a = 25c p ower di ss i pat i on  p d @t a = 70c p ower di ss i pat i on  w p d @t c = 25c power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range thermal resistance parameter typ. max. units r ja j unct i on-to- a m bi ent  ??? 58 r ja j unct i on-to- a m bi ent  12.5 ??? r ja j unct i on-to- a m bi ent  20 ??? c/w r jc j unct i on-to- c ase  ??? 3.0 r j-pcb junction-to-pcb mounted 1.0 ??? -40 to + 150 2.1 0.017 1.4 42 max. 13 10 100 12 30 55 
 2 www.irf.com s d g static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 30 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 29 ??? mv/c r ds(on) static drain-to-source on-resistance ??? 7.0 9.0 m ? ??? 8.0 11 v gs(th) gate threshold voltage 1.0 ??? 3.0 v ? v gs(th) / ? t j gate threshold voltage coefficient ??? -5.4 ??? mv/c i dss drain-to-source leakage current ??? ??? 30 a ??? ??? 100 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 gfs forward transconductance 28 ??? ??? s q g total gate charge ??? 16 24 q gs1 pre-vth gate-to-source charge ??? 4.6 ??? q gs2 post-vth gate-to-source charge ??? 1.4 ??? nc q gd gate-to-drain charge ??? 5.3 ??? q godr gate charge overdrive ??? 4.7 ??? see fig. 16 q sw switch char g e (q gs2 + q gd ) ??? 6.7 ??? q oss output charge ??? 11 ??? nc t d(on) turn-on delay time ??? 13 ??? t r rise time ??? 12 ??? t d(off) turn-off delay time ??? 16 ??? ns t f fall time ??? 3.4 ??? c iss input capacitance ??? 2120 ??? c oss output capacitance ??? 440 ??? pf c rss reverse transfer capacitance ??? 260 ??? avalanche characteristics parameter units e as sin g le pulse avalanche ener gy  mj i ar avalanche current  a e ar repetitive avalanche ener gy  mj diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 13 (body diode) a i sm pulsed source current ??? ??? 100 (body diode)  v sd diode forward voltage ??? 0.94 1.2 v t rr reverse recovery time ??? 31 47 ns q rr reverse recovery charge ??? 33 50 nc ??? v gs = 4.5v typ. ??? ??? i d = 8.8a v gs = 0v v ds = 15v i d = 8.8a 54 t j = 25c, i f = 8.8a di/dt = 100a/s  t j = 25c, i s = 8.8a, v gs = 0v  showing the integral reverse p-n junction diode. 8.8 conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 13a  max. v gs = 4.5v, i d = 10a  v ds = v gs , i d = 250a v ds = 24v, v gs = 0v mosfet symbol clamped inductive load v ds = 15v, i d = 8.8a conditions 0.21 ? = 1.0mhz v ds = 15v, v gs = 0v v dd = 15v, v gs = 4.5v  v ds = 24v, v gs = 0v, t j = 125c v ds = 15v v gs = 12v v gs = -12v
 www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 12a v gs = 10v 0.1 1.0 10.0 100.0 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 30s pulse width tj = 25c 2.7v vgs top 10v 7.0v 4.5v 3.8v 3.5v 3.2v 2.9v bottom 2.7v 0.1 1.0 10.0 100.0 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 30s pulse width tj = 150c 2.7v vgs top 10v 7.0v 4.5v 3.8v 3.5v 3.2v 2.9v bottom 2.7v 2.5 2.8 3.0 3.3 3.5 v gs , gate-to-source voltage (v) 1.0 10.0 100.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 20v 30s pulse width t j = 25c t j = 150c
 4 www.irf.com fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage fig 8. maximum safe operating area 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 10203040 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v vds= 15v i d = 8.8a 0.2 0.4 0.6 0.8 1.0 1.2 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 0 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec
 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-ambient fig 10. threshold voltage vs. temperature 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 2.023 0.000678 19.48 0.240237 21.78 2.0167 14.71 58 fig 9. maximum drain current vs. case temperature -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 t j , junction temperature (c) 0 10 20 30 40 50 60 i d , d r a i n c u r r e n t ( a )
 6 www.irf.com fig 13c. maximum avalanche energy vs. drain current fig 15a. switching time test circuit fig 15b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - 25 50 75 100 125 150 starting t j , junction temperature (c) 0 40 80 120 160 200 240 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 3.3a 3.8a bottom 8.8a fig 14b. unclamped inductive waveforms fig 14a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 3 4 5 6 7 8 9 10 v gs, gate -to -source voltage (v) 0.005 0.010 0.015 0.020 0.025 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) i d = 12a fig 12
 

 www.irf.com 7 d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 17. gate charge test circuit fig 16.    !" for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period #   
 
 # + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     fig 18. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr
 8 www.irf.com directfet  outline dimension, st outline (small size can, t-designation). please see directfet application note an-1035 for all details regarding the assembly of directfet. this includes all recommendations for stencil and substrate designs. note: controlling dimensions are in mm max 0.191 0.156 0.112 0.018 0.024 0.024 0.031 0.022 0.012 0.039 0.090 0.023 0.003 min 0.187 0.146 0.108 0.014 0.023 0.023 0.030 0.021 0.010 0.035 0.086 0.019 0.001 max 4.85 3.95 2.85 0.45 0.62 0.62 0.79 0.57 0.30 0.98 2.28 0.58 0.08 min 4.75 3.70 2.75 0.35 0.58 0.58 0.75 0.53 0.26 o.88 2.18 0.48 0.03 code a b c d e f g h j k l m n dimensions metric imperial
 www.irf.com 9 directfet  board footprint, st outline (small size can, t-designation). please see directfet application note an-1035 for all details regarding the assembly of directfet. this includes all recommendations for stencil and substrate designs. directfet  tape & reel dimension (showing component orientation). metric min 330.0 20.2 12.8 1.5 100.0 n.c 12.4 11.9 code a b c d e f g h max n.c n.c 0.520 n.c n.c 0.724 0.567 0.606 min 12.992 0.795 0.504 0.059 3.937 n.c 0.488 0.469 max n.c n.c 13.2 n.c n.c 18.4 14.4 15.4 imperial standard option (qty 4800) note: controlling dimensions in mm std reel quantity is 4800 parts. (ordered as irf6618). for 1000 parts on 7" reel, order irf6618tr1 metric imperial tr1 option (qty 1000) min 177.77 19.06 13.5 1.5 58.72 n.c 11.9 11.9 max n.c n.c 12.8 n.c n.c 13.50 12.01 12.01 min 6.9 0.75 0.53 0.059 2.31 n.c 0.47 0.47 max n.c n.c 0.50 n.c n.c 0.53 n.c n.c reel dimensions note: controlling dimensions in mm code a b c d e f g h max 0.319 0.161 0.484 0.219 0.209 0.264 n.c 0.063 min 0.311 0.154 0.469 0.215 0.201 0.256 0.059 0.059 min 7.90 3.90 11.90 5.45 5.10 6.50 1.50 1.50 max 8.10 4.10 12.30 5.55 5.30 6.70 n.c 1.60 dimensions metric imperial loaded tape feed direction
 10 www.irf.com   repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 1.38mh r g = 25 ? , i as = 8.8a.  pulse width 400s; duty cycle 2%. 
 surface mounted on 1 in. square cu board.  used double sided cooling , mounting pad.   mounted on minimum footprint full size board with metalized back and with small clip heatsink.  t c measured with thermal couple mounted to top (drain) of part. data and specifications subject to change without notice. this product has been designed and qualified for the consumer market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 9/03 directfet  part marking


▲Up To Search▲   

 
Price & Availability of IRF6608

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X